国产FPGA SOC 双目视觉处理系统开发实例

2025-02-19

442

来源:米尔电子
1. 系统架构解析
本系统基于米尔MYC-YM90X构建,搭载安路DR1 FPGA SOC 创新型异构计算平台,充分发挥其双核Cortex-A35处理器与可编程逻辑(PL)单元的协同优势。通过AXI4-Stream总线构建的高速数据通道(峰值带宽可达12.8GB/s),实现ARM与FPGA间的纳秒级(ns)延迟交互,较传统方案提升了3倍的传输效率,极大地提升了系统整体性能。
国产化技术亮点:
全自主AXI互连架构,支持多主多从拓扑,确保系统灵活性与可扩展性 硬核处理器与PL单元共享DDR3控制器,提高内存带宽利用率(可升级至DDR4) 动态时钟域隔离技术(DCIT),确保跨时钟域的数据交互稳定性,避免时序错误 国产SM4加密引擎硬件加速模块,为数据加密任务提供硬件级别的支持,提升加密处理效率
图一 系统架构框图
如图一所示,系统架构通过“低内聚,高耦合”的设计思想,通过模块化的设计方式,完成了以下工作。
1. 通过I²C对OV5640摄像头进行分辨率,输出格式等配置。
2. 双目图像数据进行三级帧缓存,FIFO——DMA——DDR。
3. 客制化低延迟ISP(开发者根据场景需求加入)
4. VTC驱动HDMI输出显示
2. 系统程序开发
2.1 DR1固件架构设计
GUI设计界面,类Blockdesign设计方式,通过AXI总线,连接DR1的ARM核与定制化外设,包括以太网,RAM模块,PL DMA和VTC。
图二 FPGA底层架构框图
2.2 双目视觉处理流水线
2.2.1 传感器配置层
为实现高效的传感器配置,本系统采用混合式I²C配置引擎,通过PL端硬件I²C控制器实现传感器参数的动态加载。与纯软件方案相比,该硬件加速的配置速度提升了8倍,显著降低了配置延迟。
// 可重配置传感器驱动IP
module ov5640_config (
input wire clk_50M,
output tri scl,
inout tri sda,
input wire [7:0] reg_addr,
input wire [15:0] reg_data,
output reg config_done
);
// 支持动态分辨率切换(1920x1080@30fps ↔ 1280x720@60fps)
parameter [15:0] RESOLUTION_TABLE[4] = '{...};
该配置引擎支持多分辨率与高帧率动态切换,适应不同应用场景需求。
2.2.2 数据采集管道
系统构建了三级缓存体系,确保数据处理的高效性和实时性:
像素级缓存:采用双时钟FIFO(写时钟74.25MHz,读时钟100MHz),实现数据的稳定缓存和传输。 行缓冲:使用BRAM的乒乓结构(每行1920像素×16bit),减少数据延迟。 帧缓存:通过DDR3-1066 1GB内存支持四帧循环存储,确保图像的持续流畅展示。
// 位宽转换智能适配器
module data_width_converter #(
parameter IN_WIDTH = 16,
parameter OUT_WIDTH = 96
)(
input wire [IN_WIDTH-1:0] din,
output wire [OUT_WIDTH-1:0] dout,
// 时钟与使能信号
);
// 采用流水线式位宽重组技术
always_ff @(posedge clk) begin
case(state)
0: buffer <= {din, 80'b0};
1: buffer <= {buffer[79:0], din};
// ...6周期完成96bit组装
endcase
end
2.2.3. 异构计算调度
系统通过AXI-DMA(Direct Memory Access)实现零拷贝数据传输,优化内存和外设间的数据交换:
写通道:PL→DDR,采用突发长度128、位宽128bit的高速数据传输 读通道:DDR→HDMI,配合动态带宽分配(QoS等级可调),确保不同带宽需求的动态适配
2.2.4 VTC显示引擎深度优化
PL DMA输出显示优化 显示时序的优化对高质量图像输出至关重要。通过VTC(Video Timing Controller),本系统能够实现多模式自适应输出。
axi_hdmi_tx#(
.ID(0),
.CR_CB_N(0),
.DEVICE_TYPE(17), // 17 for DR1M
.INTERFACE("16_BIT"),
.OUT_CLK_POLARITY (0)
)
axi_hdmi_tx_inst (
.hdmi_clk (pll_clk_150),
//.hdmi_clk (clk1_out),
.hdmi_out_clk (hdmi_clk ),
.hdmi_16_hsync (hdmi_hs ),
.hdmi_16_vsync (hdmi_vs ),
.hdmi_16_data_e (hdmi_de),
.hdmi_16_data (/*hdmi_data*/ ),
// .hdmi_16_data (hdmi_data ),
.hdmi_16_es_data (hdmi_data),
.hdmi_24_hsync (),
.hdmi_24_vsync (),
.hdmi_24_data_e (),
.hdmi_24_data (/*{r_data,g_data,b_data}*/),
.hdmi_36_hsync (),
.hdmi_36_vsync (),
.hdmi_36_data_e (),
.hdmi_36_data (),
.vdma_clk (pll_clk_150 ),
.vdma_end_of_frame (dma_m_axis_last ),
.vdma_valid (dma_m_axis_valid ),
.vdma_data (dma_m_axis_data ),
.vdma_ready (dma_m_axis_ready),
.s_axi_aclk (S_AXI_ACLK ),
.s_axi_aresetn (S_AXI_ARESETN ),
.s_axi_awvalid (axi_ds5_ds5_awvalid ),
.s_axi_awaddr (axi_ds5_ds5_awaddr ),
.s_axi_awprot (axi_ds5_ds5_awprot ),
.s_axi_awready (axi_ds5_ds5_awready ),
.s_axi_wvalid (axi_ds5_ds5_wvalid ),
.s_axi_wdata (axi_ds5_ds5_wdata ),
.s_axi_wstrb (axi_ds5_ds5_wstrb ),
.s_axi_wready (axi_ds5_ds5_wready ),
.s_axi_bvalid (axi_ds5_ds5_bvalid ),
.s_axi_bresp (axi_ds5_ds5_bresp ),
.s_axi_bready (axi_ds5_ds5_bready ),
.s_axi_arvalid (axi_ds5_ds5_arvalid ),
.s_axi_araddr (axi_ds5_ds5_araddr ),
.s_axi_arprot (axi_ds5_ds5_arprot ),
.s_axi_arready (axi_ds5_ds5_arready ),
.s_axi_rvalid (axi_ds5_ds5_rvalid ),
.s_axi_rresp (axi_ds5_ds5_rresp ),
.s_axi_rdata (axi_ds5_ds5_rdata ),
.s_axi_rready (axi_ds5_ds5_rready)
);
动态时序生成器 通过PL-PLL动态调整像素时钟,确保显示无卡顿、无闪烁,误差控制在<10ppm内。
// VTC配置代码片段(Anlogic SDK)
void config_vtc(uint32_t h_total, uint32_t v_total) {
VTCRegs->CTRL = 0x1; // 使能软复位
VTCRegs->HTOTAL = h_total - 1;
VTCRegs->VTOTAL = v_total - 1;
// 详细时序参数配置
VTCRegs->POLARITY = 0x3; // HS/VS极性配置
VTCRegs->CTRL = 0x81; // 使能模块
}
3. 硬件连接与测试
硬件连接
米尔的安路飞龙板卡采用2 X 50 PIN 连接器设计,可灵活插拔多种子卡,配合子卡套件,可扩展成多种形态,多种应用玩法。
图三 使用模组,底板,子卡和线缆搭建硬件系统
显示测试
实测双目显示清晰,无卡帧,闪屏。
图四 输出显示效果
系统集成 在FPGA硬件描述文件的基础上,进一步在Linux下实现双摄,为复杂系统调度应用铺平道路。 内核加载5640驱动下通过dma搬运ddr数据,在应用层中通过v4l2框架显示到HDMI上,完整数据流如下: FPGA DDR → AXI-DMA控制器 → Linux DMA引擎 → 内核dma_buf → V4L2 vb2队列 → mmap用户空间 → 应用处理
三路DMA设备树HDMI、camera1、camera2代码片段:
//hdmi
soft_adi_dma0: dma@80400000 {
compatible = "adi,axi-dmac-1.00.a";
reg = <0x0 0x80400000 0x0 0x10000>;
interrupts = <GIC_SPI 83 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&axi_dma_clk>;
#dma-cells = <1>;
status = "okay";
adi,channels {
#size-cells = <0>;
#address-cells = <1>;
dma-channel@0 {
reg = <0>;
adi,source-bus-width = <32>;
adi,source-bus-type = <0>;
adi,destination-bus-width = <64>;
adi,destination-bus-type = <1>;
};
};
};
// cam1
mipi_adi_dma0: dma@80300000 {
compatible = "adi,axi-dmac-1.00.a";
reg = <0x0 0x80300000 0x0 0x10000>;
interrupts = <GIC_SPI 82 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&axi_dma_clk>;
#dma-cells = <1>;
status = "okay";
adi,channels {
#size-cells = <0>;
#address-cells = <1>;
dma-channel@0 {
reg = <0>;
adi,source-bus-width = <128>;
adi,source-bus-type = <1>;
adi,destination-bus-width = <64>;
adi,destination-bus-type = <0>;
};
};
};
//cam2
mipi_adi_dma1: dma@80700000 {
compatible = "adi,axi-dmac-1.00.a";
reg = <0x0 0x80700000 0x0 0x10000>;
interrupts = <GIC_SPI 86 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&axi_dma_clk>;
#dma-cells = <1>;
status = "okay";
adi,channels {
#size-cells = <0>;
#address-cells = <1>;
dma-channel@0 {
reg = <0>;
adi,source-bus-width = <128>;
adi,source-bus-type = <1>;
adi,destination-bus-width = <32>;
adi,destination-bus-type = <0>;
};
};
};
双路i2c OV5640设备树配置代码片段
camera@3c {
compatible = "ovti,ov5640";
pinctrl-names = "default";
// pinctrl-0 = <&pinctrl_ov5640>;
reg = <0x3c>;
clocks = <&ov5640_clk>;
clock-names = "xclk";
// DOVDD-supply = <&vgen4_reg>; /* 1.8v */
// AVDD-supply = <&vgen3_reg>; /* 2.8v */
// DVDD-supply = <&vgen2_reg>; /* 1.5v */
powerdown-gpios = <&portc 8 GPIO_ACTIVE_HIGH>;
reset-gpios = <&portc 7 GPIO_ACTIVE_LOW>;
port {
/* Parallel bus endpoint */
ov5640_out_0: endpoint {
remote-endpoint = <&vcap_ov5640_in_0>;
bus-width = <8>;
data-shift = <2>; /* lines 9:2 are used */
hsync-active = <0>;
vsync-active = <0>;
pclk-sample = <1>;
};
};
};
性能测试
性能实测数据。
指标 | 实测值 | 理论峰值 |
图像处理延迟 | 18.7ms | ≤20ms |
DDR吞吐量 | 2GB/s | 2.6GB/s |
功耗(全负载) | 3.8W | 4.2W |
启动时间(Linux) | 18s | - |
4. 场景化应用扩展
该方案可广泛应用于以下领域:
智能驾驶:前视ADAS系统,包含车道识别和碰撞预警 工业检测:高速AOI(自动光学检测)流水线,提升检测精度和效率 医疗影像:内窥镜实时增强显示,支持多视角成像 机器人导航:SLAM(同步定位与地图构建)点云加速处理,提升机器人自主导航能力
通过安路TD 2024.10开发套件,开发者能够快速移植和定制化开发,具体包括:
使用GUI图形化设计约束工具,简化硬件开发过程 调用预置的接口与处理器IP,加速产品开发上市时间,专注应用和算法的处理 进行动态功耗分析(DPA)与仿真,确保系统的稳定性与高效性
0. One More Thing…
这里,回到我们原点,回到我们开发设计国产 FPGA SOC的初衷 ,芯片也好,模组也好,都只是开始,无论是FPGA,SOC,或者SOM,都是为了以更快,更好,平衡成本,体积,开发周期,开发难度,人员配置等等综合因素,做出的面向解决问题的选择,最终结果是降低成本和产品力的平衡。
安路飞龙系列的问世,让我们很欣喜看见国产SOC FPGA的崛起,希望和业界开发者一起开发构建国产SOC FPGA生态,所以选择将系列教程以知识库全部开源,共同无限进步!
米尔可能只是其中非常非常小的一个数据集,但会尽力撬动更大贡献。
获取完整工程链接和更多开发资料请联系support.cn@myir.cn。
2025-03-07
六城共启 | 米尔邀您预约2025瑞萨工业以太网技术日
随着工业4.0和工业物联网(IIoT)的发展,现代制造工厂设备的数据传输和自动化控制对实时性、带宽和可靠性提出了更高要求。各类工业以太网技术的普及和迭代不断为拓扑节点设备的确定性、安全通信提供了保障。聚焦工业4.0核心需求,瑞萨电子将于2025年3-4月在全国六大城市(深圳、广州、北京、苏州、西安、上海)巡回举办2025瑞萨工业以太网技术日,为工程师与企业决策者提供实时通信技术最佳解决方案,通过案
2025-03-06
XFCE+VNC+SWITCH+TSN全覆盖!STM32MP25x核心板Debian系统发布
一、系统概述MYD-LD25X搭载的Debian系统包含以太网、WIFI/BT、USB、RS485、RS232、CAN、AUDIO、HDMI显示和摄像头等功能,同时也集成了XFCE轻量化桌面、VNC远程操控、SWITCH网络交换和TSN时间敏感网络功能,为工业设备赋予“超强算力+实时响应+极简运维”的体验!类别名称描述源码TF-AArm Trusted Firmware2.8OP-TEEOP-TE
2025-02-27
4核CPU,ARM中量级多面手,米尔瑞芯微RK3562核心板上市
近日,米尔电子携手推出全新一代ARM核心板——基于瑞芯微RK3562(J)处理器的MYC-YR3562核心板及开发板。这款核心板凭借其强大的性能、丰富的接口和灵活的扩展能力,为工业控制、物联网网关、边缘计算等领域提供了高性价比的解决方案。核心板基于 RK3562 或RK3562J处理器,采用四核ARM Cortex-A53架构,主频高达2GHz,集成Mali-G52 GPU,支持4K视频解码和10
2025-02-19
国产FPGA SOC 双目视觉处理系统开发实例
国产FPGA SOC双目视觉处理系统开发实例1. 系统架构解析本系统基于米尔MYC-YM90X构建,搭载安路DR1 FPGA SOC 创新型异构计算平台,充分发挥其双核Cortex-A35处理器与可编程逻辑(PL)单元的协同优势。通过AXI4-Stream总线构建的高速数据通道(峰值带宽可达12.8GB/s),实现ARM与FPGA间的纳秒级(ns)延迟交互,较传统方案提升了3倍的传输效率,极大地提
2025-02-13
国产SoC开发板评测:拿下端侧AI
MYD-LR3576开发板最近,半导体圈的小伙伴应该都有所耳闻,美丽国又开始单方面无理由的制裁国内的高科技企业,从半导体设备、材料到芯片,可谓是全方位的封禁。这种形势下,显然大家应该做好最坏的打算,国产自主可控必须搞起来。那与非网本期内容就跟自主可控强关联——评测一款基于国产SoC的板卡,由米尔电子推出的瑞芯微RK3576开发板(MYD-LR3576)。开发板外设MYD-LR3576开发板分为核心
2025-02-05
2025开工大吉!
新年伊始让我们怀着对未来的憧憬与期许踏上充满挑战的新征程不忘初心 勇敢追梦米尔恭祝大家新的一年开工大吉,诸事顺利
2025-01-16
米尔瑞芯微RK3576有多强?实测三屏八摄像头轻松搞定
RK3576参数强劲RK3576是瑞芯微推出的一款高性能AIoT处理器,这款芯片以其卓越的计算能力、多屏幕支持、强大的视频编解码能力和高效的协处理器而闻名。三屏8摄像头轻松搞定米尔基于他们推出的MYD-LR3576开发板开发了一个三屏异显,8路摄像头输入的DEMO, 实测下来,RK3576轻松搞定了该任务。MYD-LR3576开发板是基于RK3576设计的一款高性能开发板。它提供了丰富的接口资源,
2025-01-16
米尔2025春节放假及发货安排
金蛇狂舞迎新年,天降祥瑞满人间。春节将至,米尔全体员工衷心感谢您长期以来的信任和支持,恭祝您新年快乐,万事如意。根据《国务院关于全国节假日放假通知》,结合我司实际情况,现将公司春节放假时间、发货时间安排如下。放假时间:1月25日-2月4日,共11天;上班时间:2月5日(正月初八)截止发货时间:1月22日(腊月廿三)开始发货时间:2月5日(正月初八) 春节休假期间,不再提供在线咨询等服务,不便之处
2025-01-09
国产FPGA SoC芯选择,米尔安路飞龙重磅发布
在边缘智能、物联网、5G通信和自动驾驶等技术的快速发展下,FPGA市场需求呈现爆发式增长。国产FPGA也在这场技术浪潮中崭露头角,吸引了广大行业人士的关注。 今天,米尔电子基于安路科技最新一代国产工业级FPGA FPSoC——发布MYC-YM90XSOM模组及评估套件。该产品采用安路飞龙DR1M90,95K LEs可编程逻辑,片上集成64位2*Cortex-A35 @1GHz处理器,适用于复杂的实
2025-01-09
瑞芯微第二代8nm高性能AIOT平台,看这款板卡怎么样?
文章来源公众号:电子开发学习瑞芯微近期推出了第二代8nm高性能AIOT平台——RK3576。RK3576应用方向指向工业控制及网关,云终端,人脸识别设备,车载中控,商显等等。参数方面,内置了四核Cortex-A72+四核Cortex-A53,频率最高2.2GHz,内置ARM G52 MC3 GPU,NPU算力高达6TOPS……参数看着非常犀利,而且据说主打的就是性价比。我们近期也拿到了米尔电子推出