G2D图像处理硬件调用和测试-基于米尔全志T113-i开发板
2024-04-09
590
来源:米尔电子
本篇测评由电子工程世界的优秀测评者“jf_99374259”提供。
本文将介绍基于米尔电子MYD-YT113i开发板的G2D图像处理硬件调用和测试。
MYC-YT113i核心板及开发板
真正的国产核心板,100%国产物料认证
国产T113-i处理器配备2*Cortex-A7@1.2GHz ,RISC-V
外置DDR3接口、支持视频编解码器、HiFi4 DSP
接口丰富:视频采集接口、显示器接口、USB2.0 接口、CAN 接口、千兆以太网接口
工业级:-40℃~+85℃、尺寸37mm*39mm
邮票孔+LGA,140+50PIN
全志 T113-i 2D图形加速硬件支持情况
Supports layer size up to 2048 x 2048 pixels
Supports pre-multiply alpha image data
Supports color key
Supports two pipes Porter-Duff alpha blending
Supports multiple video formats 4:2:0, 4:2:2, 4:1:1 and multiple pixel formats (8/16/24/32 bits graphics
layer)Supports memory scan order option
Supports any format convert function
Supports 1/16× to 32× resize ratio
Supports 32-phase 8-tap horizontal anti-alias filter and 32-phase 4-tap vertical anti-alias filter
Supports window clip
Supports FillRectangle, BitBlit, StretchBlit and MaskBlit
Supports horizontal and vertical flip, clockwise 0/90/180/270 degree rotate for normal buffer
Supports horizontal flip, clockwise 0/90/270 degree rotate for LBC buffer
可以看到 g2d 硬件支持相当多的2D图像处理,包括颜色空间转换,分辨率缩放,图层叠加,旋转等
开发环境配置
基于C语言实现的YUV转RGB
这里复用之前T113-i JPG解码的函数
void yuv420sp2rgb(const unsigned char* yuv420sp, int w, int h, unsigned char* rgb) { const unsigned char* yptr = yuv420sp; const unsigned char* vuptr = yuv420sp + w * h; for (int y = 0; y < h; y += 2) { const unsigned char* yptr0 = yptr; const unsigned char* yptr1 = yptr + w; unsigned char* rgb0 = rgb; unsigned char* rgb1 = rgb + w * 3; int remain = w; #define SATURATE_CAST_UCHAR(X) (unsigned char)::std::min(::std::max((int)(X), 0), 255); for (; remain > 0; remain -= 2) { // R = 1.164 * yy + 1.596 * vv // G = 1.164 * yy - 0.813 * vv - 0.391 * uu // B = 1.164 * yy + 2.018 * uu // R = Y + (1.370705 * (V-128)) // G = Y - (0.698001 * (V-128)) - (0.337633 * (U-128)) // B = Y + (1.732446 * (U-128)) // R = ((Y << 6) + 87.72512 * (V-128)) >> 6 // G = ((Y << 6) - 44.672064 * (V-128) - 21.608512 * (U-128)) >> 6 // B = ((Y << 6) + 110.876544 * (U-128)) >> 6 // R = ((Y << 6) + 90 * (V-128)) >> 6 // G = ((Y << 6) - 46 * (V-128) - 22 * (U-128)) >> 6 // B = ((Y << 6) + 113 * (U-128)) >> 6 // R = (yy + 90 * vv) >> 6 // G = (yy - 46 * vv - 22 * uu) >> 6 // B = (yy + 113 * uu) >> 6 int v = vuptr[0] - 128; int u = vuptr[1] - 128; int ruv = 90 * v; int guv = -46 * v + -22 * u; int buv = 113 * u; int y00 = yptr0[0] << 6; rgb0[0] = SATURATE_CAST_UCHAR((y00 + ruv) >> 6); rgb0[1] = SATURATE_CAST_UCHAR((y00 + guv) >> 6); rgb0[2] = SATURATE_CAST_UCHAR((y00 + buv) >> 6); int y01 = yptr0[1] << 6; rgb0[3] = SATURATE_CAST_UCHAR((y01 + ruv) >> 6); rgb0[4] = SATURATE_CAST_UCHAR((y01 + guv) >> 6); rgb0[5] = SATURATE_CAST_UCHAR((y01 + buv) >> 6); int y10 = yptr1[0] << 6; rgb1[0] = SATURATE_CAST_UCHAR((y10 + ruv) >> 6); rgb1[1] = SATURATE_CAST_UCHAR((y10 + guv) >> 6); rgb1[2] = SATURATE_CAST_UCHAR((y10 + buv) >> 6); int y11 = yptr1[1] << 6; rgb1[3] = SATURATE_CAST_UCHAR((y11 + ruv) >> 6); rgb1[4] = SATURATE_CAST_UCHAR((y11 + guv) >> 6); rgb1[5] = SATURATE_CAST_UCHAR((y11 + buv) >> 6); yptr0 += 2; yptr1 += 2; vuptr += 2; rgb0 += 6; rgb1 += 6; } #undef SATURATE_CAST_UCHAR yptr += 2 * w; rgb += 2 * 3 * w; } }
基于ARM neon指令集优化的YUV转RGB
考虑到armv7编译器的自动neon优化能力较差,这里针对性的编写 arm neon inline assembly 实现YUV2RGB内核部分,达到最优化的性能,榨干cpu性能
void yuv420sp2rgb_neon(const unsigned char* yuv420sp, int w, int h, unsigned char* rgb) { const unsigned char* yptr = yuv420sp; const unsigned char* vuptr = yuv420sp + w * h; #if __ARM_NEON uint8x8_t _v128 = vdup_n_u8(128); int8x8_t _v90 = vdup_n_s8(90); int8x8_t _v46 = vdup_n_s8(46); int8x8_t _v22 = vdup_n_s8(22); int8x8_t _v113 = vdup_n_s8(113); #endif // __ARM_NEON for (int y = 0; y < h; y += 2) { const unsigned char* yptr0 = yptr; const unsigned char* yptr1 = yptr + w; unsigned char* rgb0 = rgb; unsigned char* rgb1 = rgb + w * 3; #if __ARM_NEON int nn = w >> 3; int remain = w - (nn << 3); #else int remain = w; #endif // __ARM_NEON #if __ARM_NEON #if __aarch64__ for (; nn > 0; nn--) { int16x8_t _yy0 = vreinterpretq_s16_u16(vshll_n_u8(vld1_u8(yptr0), 6)); int16x8_t _yy1 = vreinterpretq_s16_u16(vshll_n_u8(vld1_u8(yptr1), 6)); int8x8_t _vvuu = vreinterpret_s8_u8(vsub_u8(vld1_u8(vuptr), _v128)); int8x8x2_t _vvvvuuuu = vtrn_s8(_vvuu, _vvuu); int8x8_t _vv = _vvvvuuuu.val[0]; int8x8_t _uu = _vvvvuuuu.val[1]; int16x8_t _r0 = vmlal_s8(_yy0, _vv, _v90); int16x8_t _g0 = vmlsl_s8(_yy0, _vv, _v46); _g0 = vmlsl_s8(_g0, _uu, _v22); int16x8_t _b0 = vmlal_s8(_yy0, _uu, _v113); int16x8_t _r1 = vmlal_s8(_yy1, _vv, _v90); int16x8_t _g1 = vmlsl_s8(_yy1, _vv, _v46); _g1 = vmlsl_s8(_g1, _uu, _v22); int16x8_t _b1 = vmlal_s8(_yy1, _uu, _v113); uint8x8x3_t _rgb0; _rgb0.val[0] = vqshrun_n_s16(_r0, 6); _rgb0.val[1] = vqshrun_n_s16(_g0, 6); _rgb0.val[2] = vqshrun_n_s16(_b0, 6); uint8x8x3_t _rgb1; _rgb1.val[0] = vqshrun_n_s16(_r1, 6); _rgb1.val[1] = vqshrun_n_s16(_g1, 6); _rgb1.val[2] = vqshrun_n_s16(_b1, 6); vst3_u8(rgb0, _rgb0); vst3_u8(rgb1, _rgb1); yptr0 += 8; yptr1 += 8; vuptr += 8; rgb0 += 24; rgb1 += 24; } #else if (nn > 0) { asm volatile( "0: n" "pld [%3, #128] n" "vld1.u8 {d2}, [%3]! n" "vsub.s8 d2, d2, %12 n" "pld [%1, #128] n" "vld1.u8 {d0}, [%1]! n" "pld [%2, #128] n" "vld1.u8 {d1}, [%2]! n" "vshll.u8 q2, d0, #6 n" "vorr d3, d2, d2 n" "vshll.u8 q3, d1, #6 n" "vorr q9, q2, q2 n" "vtrn.s8 d2, d3 n" "vorr q11, q3, q3 n" "vmlsl.s8 q9, d2, %14 n" "vorr q8, q2, q2 n" "vmlsl.s8 q11, d2, %14 n" "vorr q10, q3, q3 n" "vmlal.s8 q8, d2, %13 n" "vmlal.s8 q2, d3, %16 n" "vmlal.s8 q10, d2, %13 n" "vmlsl.s8 q9, d3, %15 n" "vmlal.s8 q3, d3, %16 n" "vmlsl.s8 q11, d3, %15 n" "vqshrun.s16 d24, q8, #6 n" "vqshrun.s16 d26, q2, #6 n" "vqshrun.s16 d4, q10, #6 n" "vqshrun.s16 d25, q9, #6 n" "vqshrun.s16 d6, q3, #6 n" "vqshrun.s16 d5, q11, #6 n" "subs %0, #1 n" "vst3.u8 {d24-d26}, [%4]! n" "vst3.u8 {d4-d6}, [%5]! n" "bne 0b n" : "=r"(nn), // %0 "=r"(yptr0), // %1 "=r"(yptr1), // %2 "=r"(vuptr), // %3 "=r"(rgb0), // %4 "=r"(rgb1) // %5 : "0"(nn), "1"(yptr0), "2"(yptr1), "3"(vuptr), "4"(rgb0), "5"(rgb1), "w"(_v128), // %12 "w"(_v90), // %13 "w"(_v46), // %14 "w"(_v22), // %15 "w"(_v113) // %16 : "cc", "memory", "q0", "q1", "q2", "q3", "q8", "q9", "q10", "q11", "q12", "d26"); } #endif // __aarch64__ #endif // __ARM_NEON #define SATURATE_CAST_UCHAR(X) (unsigned char)::std::min(::std::max((int)(X), 0), 255); for (; remain > 0; remain -= 2) { // R = 1.164 * yy + 1.596 * vv // G = 1.164 * yy - 0.813 * vv - 0.391 * uu // B = 1.164 * yy + 2.018 * uu // R = Y + (1.370705 * (V-128)) // G = Y - (0.698001 * (V-128)) - (0.337633 * (U-128)) // B = Y + (1.732446 * (U-128)) // R = ((Y << 6) + 87.72512 * (V-128)) >> 6 // G = ((Y << 6) - 44.672064 * (V-128) - 21.608512 * (U-128)) >> 6 // B = ((Y << 6) + 110.876544 * (U-128)) >> 6 // R = ((Y << 6) + 90 * (V-128)) >> 6 // G = ((Y << 6) - 46 * (V-128) - 22 * (U-128)) >> 6 // B = ((Y << 6) + 113 * (U-128)) >> 6 // R = (yy + 90 * vv) >> 6 // G = (yy - 46 * vv - 22 * uu) >> 6 // B = (yy + 113 * uu) >> 6 int v = vuptr[0] - 128; int u = vuptr[1] - 128; int ruv = 90 * v; int guv = -46 * v + -22 * u; int buv = 113 * u; int y00 = yptr0[0] << 6; rgb0[0] = SATURATE_CAST_UCHAR((y00 + ruv) >> 6); rgb0[1] = SATURATE_CAST_UCHAR((y00 + guv) >> 6); rgb0[2] = SATURATE_CAST_UCHAR((y00 + buv) >> 6); int y01 = yptr0[1] << 6; rgb0[3] = SATURATE_CAST_UCHAR((y01 + ruv) >> 6); rgb0[4] = SATURATE_CAST_UCHAR((y01 + guv) >> 6); rgb0[5] = SATURATE_CAST_UCHAR((y01 + buv) >> 6); int y10 = yptr1[0] << 6; rgb1[0] = SATURATE_CAST_UCHAR((y10 + ruv) >> 6); rgb1[1] = SATURATE_CAST_UCHAR((y10 + guv) >> 6); rgb1[2] = SATURATE_CAST_UCHAR((y10 + buv) >> 6); int y11 = yptr1[1] << 6; rgb1[3] = SATURATE_CAST_UCHAR((y11 + ruv) >> 6); rgb1[4] = SATURATE_CAST_UCHAR((y11 + guv) >> 6); rgb1[5] = SATURATE_CAST_UCHAR((y11 + buv) >> 6); yptr0 += 2; yptr1 += 2; vuptr += 2; rgb0 += 6; rgb1 += 6; } #undef SATURATE_CAST_UCHAR yptr += 2 * w; rgb += 2 * 3 * w; } }
基于G2D图形硬件的YUV转RGB
我们先实现 dmaion buffer 管理器,参考
这里贴的代码省略了异常错误处理的逻辑,有个坑是 linux-4.9 和 linux-5.4 用法不一样,米尔电子的这个T113-i系统是linux-5.4,所以不兼容4.9内核的ioctl用法习惯
struct ion_memory { size_t size; int fd; void* virt_addr; unsigned int phy_addr; }; class ion_allocator { public: ion_allocator(); ~ion_allocator(); int open(); void close(); int alloc(size_t size, struct ion_memory* mem); int free(struct ion_memory* mem); int flush(struct ion_memory* mem); public: int ion_fd; int cedar_fd; }; ion_allocator::ion_allocator() { ion_fd = -1; cedar_fd = -1; } ion_allocator::~ion_allocator() { close(); } int ion_allocator::open() { close(); ion_fd = ::open("/dev/ion", O_RDWR); cedar_fd = ::open("/dev/cedar_dev", O_RDONLY); ioctl(cedar_fd, IOCTL_ENGINE_REQ, 0); return 0; } void ion_allocator::close() { if (cedar_fd != -1) { ioctl(cedar_fd, IOCTL_ENGINE_REL, 0); ::close(cedar_fd); cedar_fd = -1; } if (ion_fd != -1) { ::close(ion_fd); ion_fd = -1; } } int ion_allocator::alloc(size_t size, struct ion_memory* mem) { struct aw_ion_new_alloc_data alloc_data; alloc_data.len = size; alloc_data.heap_id_mask = AW_ION_SYSTEM_HEAP_MASK; alloc_data.flags = AW_ION_CACHED_FLAG | AW_ION_CACHED_NEEDS_SYNC_FLAG; alloc_data.fd = 0; alloc_data.unused = 0; ioctl(ion_fd, AW_ION_IOC_NEW_ALLOC, &alloc_data); void* virt_addr = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, alloc_data.fd, 0); struct aw_user_iommu_param iommu_param; iommu_param.fd = alloc_data.fd; iommu_param.iommu_addr = 0; ioctl(cedar_fd, IOCTL_GET_IOMMU_ADDR, &iommu_param); mem->size = size; mem->fd = alloc_data.fd; mem->virt_addr = virt_addr; mem->phy_addr = iommu_param.iommu_addr; return 0; } int ion_allocator::free(struct ion_memory* mem) { if (mem->fd == -1) return 0; struct aw_user_iommu_param iommu_param; iommu_param.fd = mem->fd; ioctl(cedar_fd, IOCTL_FREE_IOMMU_ADDR, &iommu_param); munmap(mem->virt_addr, mem->size); ::close(mem->fd); mem->size = 0; mem->fd = -1; mem->virt_addr = 0; mem->phy_addr = 0; return 0; } int ion_allocator::flush(struct ion_memory* mem) { struct dma_buf_sync sync; sync.flags = DMA_BUF_SYNC_END | DMA_BUF_SYNC_RW; ioctl(mem->fd, DMA_BUF_IOCTL_SYNC, &sync); return 0; }
然后再实现 G2D图形硬件 YUV转RGB 的转换器
提前分配好YUV和RGB的dmaion buffer
将YUV数据拷贝到dmaion buffer,flush cache完成同步
配置转换参数,ioctl调用G2D_CMD_BITBLT_H完成转换
flush cache完成同步,从dmaion buffer拷贝出RGB数据
释放dmaion buffer
// 步骤1 ion_allocator ion; ion.open(); struct ion_memory yuv_ion; ion.alloc(rgb_size, &rgb_ion); struct ion_memory rgb_ion; ion.alloc(yuv_size, &yuv_ion); int g2d_fd = ::open("/dev/g2d", O_RDWR); // 步骤2 memcpy((unsigned char*)yuv_ion.virt_addr, yuv420sp, yuv_size); ion.flush(&yuv_ion); // 步骤3 g2d_blt_h blit; memset(&blit, 0, sizeof(blit)); blit.flag_h = G2D_BLT_NONE_H; blit.src_image_h.format = G2D_FORMAT_YUV420UVC_V1U1V0U0; blit.src_image_h.width = width; blit.src_image_h.height = height; blit.src_image_h.align[0] = 0; blit.src_image_h.align[1] = 0; blit.src_image_h.clip_rect.x = 0; blit.src_image_h.clip_rect.y = 0; blit.src_image_h.clip_rect.w = width; blit.src_image_h.clip_rect.h = height; blit.src_image_h.gamut = G2D_BT601; blit.src_image_h.bpremul = 0; blit.src_image_h.mode = G2D_PIXEL_ALPHA; blit.src_image_h.use_phy_addr = 0; blit.src_image_h.fd = yuv_ion.fd; blit.dst_image_h.format = G2D_FORMAT_RGB888; blit.dst_image_h.width = width; blit.dst_image_h.height = height; blit.dst_image_h.align[0] = 0; blit.dst_image_h.clip_rect.x = 0; blit.dst_image_h.clip_rect.y = 0; blit.dst_image_h.clip_rect.w = width; blit.dst_image_h.clip_rect.h = height; blit.dst_image_h.gamut = G2D_BT601; blit.dst_image_h.bpremul = 0; blit.dst_image_h.mode = G2D_PIXEL_ALPHA; blit.dst_image_h.use_phy_addr = 0; blit.dst_image_h.fd = rgb_ion.fd; ioctl(g2d_fd, G2D_CMD_BITBLT_H, &blit); // 步骤4 ion.flush(&rgb_ion); memcpy(rgb, (const unsigned char*)rgb_ion.virt_addr, rgb_size); // 步骤5 ion.free(&rgb_ion); ion.free(&yuv_ion); ion.close(); ::close(g2d_fd);
G2D图像硬件YUV转RGB测试
考虑到dmaion buffer分配和释放都比较耗时,我们提前做好,循环调用步骤3的G2D转换,统计耗时,并在top工具中查看CPU占用率
sh-4.4# LD_LIBRARY_PATH=. ./g2dtest INFO : cedarc <CedarPluginVDInit:84>: register mjpeg decoder success! this device is not whitelisted for jpeg decoder cvi this device is not whitelisted for jpeg decoder cvi this device is not whitelisted for jpeg decoder cvi this device is not whitelisted for jpeg encoder rkmpp INFO : cedarc <log_set_level:43>: Set log level to 5 from /vendor/etc/cedarc.conf ERROR : cedarc <DebugCheckConfig:316>: now cedarc log level:5 ERROR : cedarc <VideoEncCreate:241>: now cedarc log level:5 yuv420sp2rgb 46.61 yuv420sp2rgb 42.04 yuv420sp2rgb 41.32 yuv420sp2rgb 42.06 yuv420sp2rgb 41.69 yuv420sp2rgb 42.05 yuv420sp2rgb 41.29 yuv420sp2rgb 41.30 yuv420sp2rgb 42.14 yuv420sp2rgb 41.33 yuv420sp2rgb_neon 10.57 yuv420sp2rgb_neon 7.21 yuv420sp2rgb_neon 6.77 yuv420sp2rgb_neon 8.31 yuv420sp2rgb_neon 7.60 yuv420sp2rgb_neon 6.80 yuv420sp2rgb_neon 6.77 yuv420sp2rgb_neon 7.01 yuv420sp2rgb_neon 7.11 yuv420sp2rgb_neon 7.06 yuv420sp2rgb_g2d 4.32 yuv420sp2rgb_g2d 4.69 yuv420sp2rgb_g2d 4.56 yuv420sp2rgb_g2d 4.57 yuv420sp2rgb_g2d 4.52 yuv420sp2rgb_g2d 4.54 yuv420sp2rgb_g2d 4.52 yuv420sp2rgb_g2d 4.58 yuv420sp2rgb_g2d 4.60 yuv420sp2rgb_g2d 4.67
可以看到 ARM neon 的优化效果非常明显,而使用G2D图形硬件能获得进一步加速,并且能显著降低CPU占用率!
耗时(ms) | CPU占用率(%) | |
---|---|---|
C | 41.30 | 50 |
neon | 6.77 | 50 |
g2d | 4.32 | 12 |
转换结果对比和分析
C和neon的转换结果完全一致,但是g2d转换后的图片有明显的色差
G2D图形硬件只支持 G2D_BT601,G2D_BT709,G2D_BT2020 3种YUV系数,而JPG所使用的YUV系数是改版BT601,因此产生了色差
从g2d内核驱动中也可以得知,暂时没有方法为g2d设置自定义的YUV系数,g2d不适合用于JPG的编解码,但依然适合摄像头和视频编解码的颜色空间转换
2024-11-21
后摩尔时代的创新:在米尔FPGA上实现Tiny YOLO V4,助力AIoT应用
学习如何在 MYIR 的 ZU3EG FPGA 开发板上部署 Tiny YOLO v4,对比 FPGA、GPU、CPU 的性能,助力 AIoT 边缘计算应用。(文末有彩蛋)一、为什么选择 FPGA:应对 7nm 制程与 AI 限制在全球半导体制程限制和高端GPU 受限的大环境下,FPGA 成为了中国企业发展的重要路径之一。它可支持灵活的AIoT 应用,其灵活性与可编程性使其可以在国内成熟的 28n
2024-11-21
追加名额丨米尔瑞芯微RK3576开发板有奖试用
米尔与瑞芯微合作发布的新品基于瑞芯微RK3576应用处理器的MYD-LR3576开发板免费试用活动加码啦~~米尔追加了2块价值849元的MYD-LR3576开发板发起试用活动您不仅可以免费体验还可以获得京东购物卡赶快点击链接报名吧~↓↓↓评测活动报名链接:EEWORLD电子工程世界:https://bbs.eeworld.com.cn/elecplay.php?action=show&op
2024-11-12
米尔RK3576开发板双十一特惠活动!
近日,米尔电子发布基于瑞芯微RK3576核心板和开发板,RK3576作为国产热门处理器,其高性能数据处理能力、领先的AI智能分析、强大的扩展性与兼容性受到广大开发者的关注。此次,米尔推出RK3576开发板特价活动,价格699元起,限量抢购。点击链接购买:https://detail.tmall.com/item.htm?id=8461721608876 TOPS超强算力,8核CPU赋能AI瑞芯微R
2024-11-12
有奖丨米尔 瑞芯微RK3576开发板免费试用
米尔与瑞芯微合作发布的新品基于瑞芯微RK3576应用处理器的MYD-LR3576开发板免费试用活动来啦~~米尔提供了7块价值849元的MYD-LR3576开发板发起试用活动您不仅可以免费体验还可以获得京东购物卡赶快点击链接报名吧~↓↓↓评测活动报名链接:面包板:https://mbb.eet-china.com/evaluating/product-193.html#report试用活动信息报名时
2024-11-07
配置上新!米尔-新唐MA35D1核心板512M DDR配置发布!
米尔在2024年8月推出了基于新唐MA35D1芯片设计的嵌入式处理器模块MYC-LMA35核心板及开发板。MA35D1是集成2个Cortex-A35与1个Cortex-M4的异构微处理器芯片。核心板采用创新LGA 252PIN设计,原生17路UART和4路CAN FD等丰富的通讯接口,可广泛应用于新能源充电桩、工程机械控制器、OBD汽车诊断仪、工业网关、运动控制器和电力DTU等场景。配置上新,容量
2024-11-07
基于OpenCV的相机捕捉视频进行人脸检测--米尔NXP i.MX93开发板
本篇测评由与非网的优秀测评者“eefocus_3914144”提供。本文将介绍基于米尔电子MYD-LMX93开发板(米尔基于NXP i.MX93开发板)的基于OpenCV的人脸检测方案测试。OpenCV提供了一个非常简单的接口,用于相机捕捉一个视频(我用的电脑内置摄像头)1、安装python3-opencvaptinstallpython3-opencv2、查看摄像头支持的格式与分辨率root@d
2024-10-31
低至5折!感恩相伴,助力产品长跑,米尔FPGA开发板大减价
文末有礼米尔电子作为行业领先的解决方案供应商,致力于打造高可靠性、长生命周期的FPGA SOM(System on Module)产品,满足工业、汽车、医疗,电力等严苛应用领域的需求。米尔设计开发硬件平台,接口驱动等底层软件作为中间件,客户仅需关注自身业务与行业应用层软件开发,极大减少设计难度,加快了上市周期。支持开发板样件,POC,量产定制,灵活满足客户不同阶段需求。1. 产品升级与性能提升米尔
2024-10-31
4K视频为何越来越糊?SGMII与HEVC如何重拾高码流体验
1.引言随着网络视频平台的发展,用户对于4K高清画质的需求日益增长。然而,许多用户发现,即使购买了视频平台的会员,观看4K内容时画质却不如预期,有时甚至还会出现模糊、卡顿的情况。这种现象背后涉及到视频编码、网络带宽、和视频传输的诸多因素。近期“影视飓风”发布的视频《清晰度不如4年前!视频变糊是你的错觉吗?》因讨论视频平台降低码率和改变编码格式以压缩视频画质,影响了内容表达。4K视频清晰度下降的一个
2024-10-24
新品!米尔RK3576核心板8核6T高算力,革新AIoT设备
随着科技的快速发展,AIoT智能终端对嵌入式模块的末端计算能力、数据处理能力等要求日益提高。近日,米尔电子发布了一款基于瑞芯微RK3576核心板和开发板。核心板提供4GB/8GB LPDDR4X、32GB/64GB eMMC等多个型号供选择。瑞芯微RK3576核心优势主要包括高性能数据处理能力、领先的AI智能分析、多样化的显示与操作体验以及强大的扩展性与兼容性。下面详细介绍这款核心板的优势。6T
2024-10-24
TI研讨会正在进行中,米尔诚邀您参与
让嵌入式的未来成为可能!10月22日,2024德州仪器嵌入式技术创新发展研讨会如约而至!探讨 TI 嵌入式新产品和应用方案。这里有全面的 TI 嵌入式处理器产品组合、热门的无线连接、微控制器、处理器技术以及毫米波传感器解决方案、前沿的系统解决方案、新一代产品介绍以及方便易用的平台及工具,满足您各类设计需求,助力每个项目的快速上市!米尔作为领先的嵌入式处理器模组厂商,出席了此次会议,米尔电子在现场展