G2D图像处理硬件调用和测试-基于米尔全志T113-i开发板

2024-04-09

1234

来源:米尔电子
本篇测评由电子工程世界的优秀测评者“jf_99374259”提供。
本文将介绍基于米尔电子MYD-YT113i开发板的G2D图像处理硬件调用和测试。
MYC-YT113i核心板及开发板
真正的国产核心板,100%国产物料认证
国产T113-i处理器配备2*Cortex-A7@1.2GHz ,RISC-V
外置DDR3接口、支持视频编解码器、HiFi4 DSP
接口丰富:视频采集接口、显示器接口、USB2.0 接口、CAN 接口、千兆以太网接口
工业级:-40℃~+85℃、尺寸37mm*39mm
邮票孔+LGA,140+50PIN
全志 T113-i 2D图形加速硬件支持情况
Supports layer size up to 2048 x 2048 pixels
Supports pre-multiply alpha image data
Supports color key
Supports two pipes Porter-Duff alpha blending
Supports multiple video formats 4:2:0, 4:2:2, 4:1:1 and multiple pixel formats (8/16/24/32 bits graphics
layer)Supports memory scan order option
Supports any format convert function
Supports 1/16× to 32× resize ratio
Supports 32-phase 8-tap horizontal anti-alias filter and 32-phase 4-tap vertical anti-alias filter
Supports window clip
Supports FillRectangle, BitBlit, StretchBlit and MaskBlit
Supports horizontal and vertical flip, clockwise 0/90/180/270 degree rotate for normal buffer
Supports horizontal flip, clockwise 0/90/270 degree rotate for LBC buffer
可以看到 g2d 硬件支持相当多的2D图像处理,包括颜色空间转换,分辨率缩放,图层叠加,旋转等
开发环境配置
基于C语言实现的YUV转RGB
这里复用之前T113-i JPG解码的函数
void yuv420sp2rgb(const unsigned char* yuv420sp, int w, int h, unsigned char* rgb) { const unsigned char* yptr = yuv420sp; const unsigned char* vuptr = yuv420sp + w * h; for (int y = 0; y < h; y += 2) { const unsigned char* yptr0 = yptr; const unsigned char* yptr1 = yptr + w; unsigned char* rgb0 = rgb; unsigned char* rgb1 = rgb + w * 3; int remain = w; #define SATURATE_CAST_UCHAR(X) (unsigned char)::std::min(::std::max((int)(X), 0), 255); for (; remain > 0; remain -= 2) { // R = 1.164 * yy + 1.596 * vv // G = 1.164 * yy - 0.813 * vv - 0.391 * uu // B = 1.164 * yy + 2.018 * uu // R = Y + (1.370705 * (V-128)) // G = Y - (0.698001 * (V-128)) - (0.337633 * (U-128)) // B = Y + (1.732446 * (U-128)) // R = ((Y << 6) + 87.72512 * (V-128)) >> 6 // G = ((Y << 6) - 44.672064 * (V-128) - 21.608512 * (U-128)) >> 6 // B = ((Y << 6) + 110.876544 * (U-128)) >> 6 // R = ((Y << 6) + 90 * (V-128)) >> 6 // G = ((Y << 6) - 46 * (V-128) - 22 * (U-128)) >> 6 // B = ((Y << 6) + 113 * (U-128)) >> 6 // R = (yy + 90 * vv) >> 6 // G = (yy - 46 * vv - 22 * uu) >> 6 // B = (yy + 113 * uu) >> 6 int v = vuptr[0] - 128; int u = vuptr[1] - 128; int ruv = 90 * v; int guv = -46 * v + -22 * u; int buv = 113 * u; int y00 = yptr0[0] << 6; rgb0[0] = SATURATE_CAST_UCHAR((y00 + ruv) >> 6); rgb0[1] = SATURATE_CAST_UCHAR((y00 + guv) >> 6); rgb0[2] = SATURATE_CAST_UCHAR((y00 + buv) >> 6); int y01 = yptr0[1] << 6; rgb0[3] = SATURATE_CAST_UCHAR((y01 + ruv) >> 6); rgb0[4] = SATURATE_CAST_UCHAR((y01 + guv) >> 6); rgb0[5] = SATURATE_CAST_UCHAR((y01 + buv) >> 6); int y10 = yptr1[0] << 6; rgb1[0] = SATURATE_CAST_UCHAR((y10 + ruv) >> 6); rgb1[1] = SATURATE_CAST_UCHAR((y10 + guv) >> 6); rgb1[2] = SATURATE_CAST_UCHAR((y10 + buv) >> 6); int y11 = yptr1[1] << 6; rgb1[3] = SATURATE_CAST_UCHAR((y11 + ruv) >> 6); rgb1[4] = SATURATE_CAST_UCHAR((y11 + guv) >> 6); rgb1[5] = SATURATE_CAST_UCHAR((y11 + buv) >> 6); yptr0 += 2; yptr1 += 2; vuptr += 2; rgb0 += 6; rgb1 += 6; } #undef SATURATE_CAST_UCHAR yptr += 2 * w; rgb += 2 * 3 * w; } }
基于ARM neon指令集优化的YUV转RGB
考虑到armv7编译器的自动neon优化能力较差,这里针对性的编写 arm neon inline assembly 实现YUV2RGB内核部分,达到最优化的性能,榨干cpu性能
void yuv420sp2rgb_neon(const unsigned char* yuv420sp, int w, int h, unsigned char* rgb) { const unsigned char* yptr = yuv420sp; const unsigned char* vuptr = yuv420sp + w * h; #if __ARM_NEON uint8x8_t _v128 = vdup_n_u8(128); int8x8_t _v90 = vdup_n_s8(90); int8x8_t _v46 = vdup_n_s8(46); int8x8_t _v22 = vdup_n_s8(22); int8x8_t _v113 = vdup_n_s8(113); #endif // __ARM_NEON for (int y = 0; y < h; y += 2) { const unsigned char* yptr0 = yptr; const unsigned char* yptr1 = yptr + w; unsigned char* rgb0 = rgb; unsigned char* rgb1 = rgb + w * 3; #if __ARM_NEON int nn = w >> 3; int remain = w - (nn << 3); #else int remain = w; #endif // __ARM_NEON #if __ARM_NEON #if __aarch64__ for (; nn > 0; nn--) { int16x8_t _yy0 = vreinterpretq_s16_u16(vshll_n_u8(vld1_u8(yptr0), 6)); int16x8_t _yy1 = vreinterpretq_s16_u16(vshll_n_u8(vld1_u8(yptr1), 6)); int8x8_t _vvuu = vreinterpret_s8_u8(vsub_u8(vld1_u8(vuptr), _v128)); int8x8x2_t _vvvvuuuu = vtrn_s8(_vvuu, _vvuu); int8x8_t _vv = _vvvvuuuu.val[0]; int8x8_t _uu = _vvvvuuuu.val[1]; int16x8_t _r0 = vmlal_s8(_yy0, _vv, _v90); int16x8_t _g0 = vmlsl_s8(_yy0, _vv, _v46); _g0 = vmlsl_s8(_g0, _uu, _v22); int16x8_t _b0 = vmlal_s8(_yy0, _uu, _v113); int16x8_t _r1 = vmlal_s8(_yy1, _vv, _v90); int16x8_t _g1 = vmlsl_s8(_yy1, _vv, _v46); _g1 = vmlsl_s8(_g1, _uu, _v22); int16x8_t _b1 = vmlal_s8(_yy1, _uu, _v113); uint8x8x3_t _rgb0; _rgb0.val[0] = vqshrun_n_s16(_r0, 6); _rgb0.val[1] = vqshrun_n_s16(_g0, 6); _rgb0.val[2] = vqshrun_n_s16(_b0, 6); uint8x8x3_t _rgb1; _rgb1.val[0] = vqshrun_n_s16(_r1, 6); _rgb1.val[1] = vqshrun_n_s16(_g1, 6); _rgb1.val[2] = vqshrun_n_s16(_b1, 6); vst3_u8(rgb0, _rgb0); vst3_u8(rgb1, _rgb1); yptr0 += 8; yptr1 += 8; vuptr += 8; rgb0 += 24; rgb1 += 24; } #else if (nn > 0) { asm volatile( "0: n" "pld [%3, #128] n" "vld1.u8 {d2}, [%3]! n" "vsub.s8 d2, d2, %12 n" "pld [%1, #128] n" "vld1.u8 {d0}, [%1]! n" "pld [%2, #128] n" "vld1.u8 {d1}, [%2]! n" "vshll.u8 q2, d0, #6 n" "vorr d3, d2, d2 n" "vshll.u8 q3, d1, #6 n" "vorr q9, q2, q2 n" "vtrn.s8 d2, d3 n" "vorr q11, q3, q3 n" "vmlsl.s8 q9, d2, %14 n" "vorr q8, q2, q2 n" "vmlsl.s8 q11, d2, %14 n" "vorr q10, q3, q3 n" "vmlal.s8 q8, d2, %13 n" "vmlal.s8 q2, d3, %16 n" "vmlal.s8 q10, d2, %13 n" "vmlsl.s8 q9, d3, %15 n" "vmlal.s8 q3, d3, %16 n" "vmlsl.s8 q11, d3, %15 n" "vqshrun.s16 d24, q8, #6 n" "vqshrun.s16 d26, q2, #6 n" "vqshrun.s16 d4, q10, #6 n" "vqshrun.s16 d25, q9, #6 n" "vqshrun.s16 d6, q3, #6 n" "vqshrun.s16 d5, q11, #6 n" "subs %0, #1 n" "vst3.u8 {d24-d26}, [%4]! n" "vst3.u8 {d4-d6}, [%5]! n" "bne 0b n" : "=r"(nn), // %0 "=r"(yptr0), // %1 "=r"(yptr1), // %2 "=r"(vuptr), // %3 "=r"(rgb0), // %4 "=r"(rgb1) // %5 : "0"(nn), "1"(yptr0), "2"(yptr1), "3"(vuptr), "4"(rgb0), "5"(rgb1), "w"(_v128), // %12 "w"(_v90), // %13 "w"(_v46), // %14 "w"(_v22), // %15 "w"(_v113) // %16 : "cc", "memory", "q0", "q1", "q2", "q3", "q8", "q9", "q10", "q11", "q12", "d26"); } #endif // __aarch64__ #endif // __ARM_NEON #define SATURATE_CAST_UCHAR(X) (unsigned char)::std::min(::std::max((int)(X), 0), 255); for (; remain > 0; remain -= 2) { // R = 1.164 * yy + 1.596 * vv // G = 1.164 * yy - 0.813 * vv - 0.391 * uu // B = 1.164 * yy + 2.018 * uu // R = Y + (1.370705 * (V-128)) // G = Y - (0.698001 * (V-128)) - (0.337633 * (U-128)) // B = Y + (1.732446 * (U-128)) // R = ((Y << 6) + 87.72512 * (V-128)) >> 6 // G = ((Y << 6) - 44.672064 * (V-128) - 21.608512 * (U-128)) >> 6 // B = ((Y << 6) + 110.876544 * (U-128)) >> 6 // R = ((Y << 6) + 90 * (V-128)) >> 6 // G = ((Y << 6) - 46 * (V-128) - 22 * (U-128)) >> 6 // B = ((Y << 6) + 113 * (U-128)) >> 6 // R = (yy + 90 * vv) >> 6 // G = (yy - 46 * vv - 22 * uu) >> 6 // B = (yy + 113 * uu) >> 6 int v = vuptr[0] - 128; int u = vuptr[1] - 128; int ruv = 90 * v; int guv = -46 * v + -22 * u; int buv = 113 * u; int y00 = yptr0[0] << 6; rgb0[0] = SATURATE_CAST_UCHAR((y00 + ruv) >> 6); rgb0[1] = SATURATE_CAST_UCHAR((y00 + guv) >> 6); rgb0[2] = SATURATE_CAST_UCHAR((y00 + buv) >> 6); int y01 = yptr0[1] << 6; rgb0[3] = SATURATE_CAST_UCHAR((y01 + ruv) >> 6); rgb0[4] = SATURATE_CAST_UCHAR((y01 + guv) >> 6); rgb0[5] = SATURATE_CAST_UCHAR((y01 + buv) >> 6); int y10 = yptr1[0] << 6; rgb1[0] = SATURATE_CAST_UCHAR((y10 + ruv) >> 6); rgb1[1] = SATURATE_CAST_UCHAR((y10 + guv) >> 6); rgb1[2] = SATURATE_CAST_UCHAR((y10 + buv) >> 6); int y11 = yptr1[1] << 6; rgb1[3] = SATURATE_CAST_UCHAR((y11 + ruv) >> 6); rgb1[4] = SATURATE_CAST_UCHAR((y11 + guv) >> 6); rgb1[5] = SATURATE_CAST_UCHAR((y11 + buv) >> 6); yptr0 += 2; yptr1 += 2; vuptr += 2; rgb0 += 6; rgb1 += 6; } #undef SATURATE_CAST_UCHAR yptr += 2 * w; rgb += 2 * 3 * w; } }
基于G2D图形硬件的YUV转RGB
我们先实现 dmaion buffer 管理器,参考
这里贴的代码省略了异常错误处理的逻辑,有个坑是 linux-4.9 和 linux-5.4 用法不一样,米尔电子的这个T113-i系统是linux-5.4,所以不兼容4.9内核的ioctl用法习惯
struct ion_memory { size_t size; int fd; void* virt_addr; unsigned int phy_addr; }; class ion_allocator { public: ion_allocator(); ~ion_allocator(); int open(); void close(); int alloc(size_t size, struct ion_memory* mem); int free(struct ion_memory* mem); int flush(struct ion_memory* mem); public: int ion_fd; int cedar_fd; }; ion_allocator::ion_allocator() { ion_fd = -1; cedar_fd = -1; } ion_allocator::~ion_allocator() { close(); } int ion_allocator::open() { close(); ion_fd = ::open("/dev/ion", O_RDWR); cedar_fd = ::open("/dev/cedar_dev", O_RDONLY); ioctl(cedar_fd, IOCTL_ENGINE_REQ, 0); return 0; } void ion_allocator::close() { if (cedar_fd != -1) { ioctl(cedar_fd, IOCTL_ENGINE_REL, 0); ::close(cedar_fd); cedar_fd = -1; } if (ion_fd != -1) { ::close(ion_fd); ion_fd = -1; } } int ion_allocator::alloc(size_t size, struct ion_memory* mem) { struct aw_ion_new_alloc_data alloc_data; alloc_data.len = size; alloc_data.heap_id_mask = AW_ION_SYSTEM_HEAP_MASK; alloc_data.flags = AW_ION_CACHED_FLAG | AW_ION_CACHED_NEEDS_SYNC_FLAG; alloc_data.fd = 0; alloc_data.unused = 0; ioctl(ion_fd, AW_ION_IOC_NEW_ALLOC, &alloc_data); void* virt_addr = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, alloc_data.fd, 0); struct aw_user_iommu_param iommu_param; iommu_param.fd = alloc_data.fd; iommu_param.iommu_addr = 0; ioctl(cedar_fd, IOCTL_GET_IOMMU_ADDR, &iommu_param); mem->size = size; mem->fd = alloc_data.fd; mem->virt_addr = virt_addr; mem->phy_addr = iommu_param.iommu_addr; return 0; } int ion_allocator::free(struct ion_memory* mem) { if (mem->fd == -1) return 0; struct aw_user_iommu_param iommu_param; iommu_param.fd = mem->fd; ioctl(cedar_fd, IOCTL_FREE_IOMMU_ADDR, &iommu_param); munmap(mem->virt_addr, mem->size); ::close(mem->fd); mem->size = 0; mem->fd = -1; mem->virt_addr = 0; mem->phy_addr = 0; return 0; } int ion_allocator::flush(struct ion_memory* mem) { struct dma_buf_sync sync; sync.flags = DMA_BUF_SYNC_END | DMA_BUF_SYNC_RW; ioctl(mem->fd, DMA_BUF_IOCTL_SYNC, &sync); return 0; }
然后再实现 G2D图形硬件 YUV转RGB 的转换器
提前分配好YUV和RGB的dmaion buffer
将YUV数据拷贝到dmaion buffer,flush cache完成同步
配置转换参数,ioctl调用G2D_CMD_BITBLT_H完成转换
flush cache完成同步,从dmaion buffer拷贝出RGB数据
释放dmaion buffer
// 步骤1 ion_allocator ion; ion.open(); struct ion_memory yuv_ion; ion.alloc(rgb_size, &rgb_ion); struct ion_memory rgb_ion; ion.alloc(yuv_size, &yuv_ion); int g2d_fd = ::open("/dev/g2d", O_RDWR); // 步骤2 memcpy((unsigned char*)yuv_ion.virt_addr, yuv420sp, yuv_size); ion.flush(&yuv_ion); // 步骤3 g2d_blt_h blit; memset(&blit, 0, sizeof(blit)); blit.flag_h = G2D_BLT_NONE_H; blit.src_image_h.format = G2D_FORMAT_YUV420UVC_V1U1V0U0; blit.src_image_h.width = width; blit.src_image_h.height = height; blit.src_image_h.align[0] = 0; blit.src_image_h.align[1] = 0; blit.src_image_h.clip_rect.x = 0; blit.src_image_h.clip_rect.y = 0; blit.src_image_h.clip_rect.w = width; blit.src_image_h.clip_rect.h = height; blit.src_image_h.gamut = G2D_BT601; blit.src_image_h.bpremul = 0; blit.src_image_h.mode = G2D_PIXEL_ALPHA; blit.src_image_h.use_phy_addr = 0; blit.src_image_h.fd = yuv_ion.fd; blit.dst_image_h.format = G2D_FORMAT_RGB888; blit.dst_image_h.width = width; blit.dst_image_h.height = height; blit.dst_image_h.align[0] = 0; blit.dst_image_h.clip_rect.x = 0; blit.dst_image_h.clip_rect.y = 0; blit.dst_image_h.clip_rect.w = width; blit.dst_image_h.clip_rect.h = height; blit.dst_image_h.gamut = G2D_BT601; blit.dst_image_h.bpremul = 0; blit.dst_image_h.mode = G2D_PIXEL_ALPHA; blit.dst_image_h.use_phy_addr = 0; blit.dst_image_h.fd = rgb_ion.fd; ioctl(g2d_fd, G2D_CMD_BITBLT_H, &blit); // 步骤4 ion.flush(&rgb_ion); memcpy(rgb, (const unsigned char*)rgb_ion.virt_addr, rgb_size); // 步骤5 ion.free(&rgb_ion); ion.free(&yuv_ion); ion.close(); ::close(g2d_fd);
G2D图像硬件YUV转RGB测试
考虑到dmaion buffer分配和释放都比较耗时,我们提前做好,循环调用步骤3的G2D转换,统计耗时,并在top工具中查看CPU占用率
sh-4.4# LD_LIBRARY_PATH=. ./g2dtest INFO : cedarc <CedarPluginVDInit:84>: register mjpeg decoder success! this device is not whitelisted for jpeg decoder cvi this device is not whitelisted for jpeg decoder cvi this device is not whitelisted for jpeg decoder cvi this device is not whitelisted for jpeg encoder rkmpp INFO : cedarc <log_set_level:43>: Set log level to 5 from /vendor/etc/cedarc.conf ERROR : cedarc <DebugCheckConfig:316>: now cedarc log level:5 ERROR : cedarc <VideoEncCreate:241>: now cedarc log level:5 yuv420sp2rgb 46.61 yuv420sp2rgb 42.04 yuv420sp2rgb 41.32 yuv420sp2rgb 42.06 yuv420sp2rgb 41.69 yuv420sp2rgb 42.05 yuv420sp2rgb 41.29 yuv420sp2rgb 41.30 yuv420sp2rgb 42.14 yuv420sp2rgb 41.33 yuv420sp2rgb_neon 10.57 yuv420sp2rgb_neon 7.21 yuv420sp2rgb_neon 6.77 yuv420sp2rgb_neon 8.31 yuv420sp2rgb_neon 7.60 yuv420sp2rgb_neon 6.80 yuv420sp2rgb_neon 6.77 yuv420sp2rgb_neon 7.01 yuv420sp2rgb_neon 7.11 yuv420sp2rgb_neon 7.06 yuv420sp2rgb_g2d 4.32 yuv420sp2rgb_g2d 4.69 yuv420sp2rgb_g2d 4.56 yuv420sp2rgb_g2d 4.57 yuv420sp2rgb_g2d 4.52 yuv420sp2rgb_g2d 4.54 yuv420sp2rgb_g2d 4.52 yuv420sp2rgb_g2d 4.58 yuv420sp2rgb_g2d 4.60 yuv420sp2rgb_g2d 4.67
可以看到 ARM neon 的优化效果非常明显,而使用G2D图形硬件能获得进一步加速,并且能显著降低CPU占用率!
耗时(ms) | CPU占用率(%) | |
---|---|---|
C | 41.30 | 50 |
neon | 6.77 | 50 |
g2d | 4.32 | 12 |
转换结果对比和分析
C和neon的转换结果完全一致,但是g2d转换后的图片有明显的色差
G2D图形硬件只支持 G2D_BT601,G2D_BT709,G2D_BT2020 3种YUV系数,而JPG所使用的YUV系数是改版BT601,因此产生了色差
从g2d内核驱动中也可以得知,暂时没有方法为g2d设置自定义的YUV系数,g2d不适合用于JPG的编解码,但依然适合摄像头和视频编解码的颜色空间转换
2025-03-20
一篇文章玩转T113的ARM+RSIC V+DSP三核异构!
近年来,随着半导体产业的快速发展和技术的不断迭代,物联网设备种类繁多(如智能家居、工业传感器),对算力、功耗、实时性要求差异大,单一架构无法满足所有需求。因此米尔推出MYD-YT113i开发板(基于全志T113-i)来应对这一市场需求。米尔基于全志T113-i核心板及开发板part 01T113-i芯片及OpenAMP简介T113-i芯片简介T113-i由两颗ARM A7 、一颗C906(RISC
2025-03-13
ST×米尔STM32MP25x高阶实战培训会
STM32MP25x是ST推出的搭载了双核Cortex-A35@1.5 GHz和Cortex-M33@400 MHz的微处理器。米尔电子基于STM32MP25x推出了MYD-LD25X开发板,开发板配备丰富的扩展接口。为助力开发者深度掌握与应用STM32MP25x处理器,米尔将与ST在2025年4月11日和2025年4月18日分别于深圳、上海联合举办线下高阶实战培训会,本次培训在上一期“Bring
2025-03-13
瑞萨交流日进行中,米尔演讲-RZ/T2H高性能模组赋能工业产品创新
3月12日,2025瑞萨工业以太网技术日在深圳拉开序幕。会议全方位解读瑞萨电子最新EtherCAT/PROFINET/EIP解决方案,洞察行业发展趋势,助力企业高效开发更具竞争力的工业以太网产品。米尔电子作为瑞萨的IDH生态合作伙伴发表演讲,并展出RZ/T2H的核心板开发板、技术方案等。米尔活动现场会上,米尔电子产品经理张先生发表了题为"米尔RZ/T2H高性能模组赋能工业产品创新&quo
2025-03-13
米尔闪耀德国纽伦堡Embedded World 2025,展现嵌入式技术无限可能
2025年3月11日,全球领先的嵌入式解决方案提供商米尔电子,在德国纽伦堡盛大亮相全球规模最大的嵌入式系统展览会Embedded World 2025。此次展会,米尔电子携多款重磅新品和前沿技术方案惊艳登场,为嵌入式开发者带来了一场科技盛宴。米尔展台现场展会现场,米尔电子展示全系列产品,基于国内外知名厂商ST、TI、NXP、瑞萨、AMD(Xilinx)、瑞芯微、全志、新唐、芯驰、海思、紫光同创等主
2025-03-07
六城共启 | 米尔邀您预约2025瑞萨工业以太网技术日
随着工业4.0和工业物联网(IIoT)的发展,现代制造工厂设备的数据传输和自动化控制对实时性、带宽和可靠性提出了更高要求。各类工业以太网技术的普及和迭代不断为拓扑节点设备的确定性、安全通信提供了保障。聚焦工业4.0核心需求,瑞萨电子将于2025年3-4月在全国六大城市(深圳、广州、北京、苏州、西安、上海)巡回举办2025瑞萨工业以太网技术日,为工程师与企业决策者提供实时通信技术最佳解决方案,通过案
2025-03-06
XFCE+VNC+SWITCH+TSN全覆盖!STM32MP25x核心板Debian系统发布
一、系统概述MYD-LD25X搭载的Debian系统包含以太网、WIFI/BT、USB、RS485、RS232、CAN、AUDIO、HDMI显示和摄像头等功能,同时也集成了XFCE轻量化桌面、VNC远程操控、SWITCH网络交换和TSN时间敏感网络功能,为工业设备赋予“超强算力+实时响应+极简运维”的体验!类别名称描述源码TF-AArm Trusted Firmware2.8OP-TEEOP-TE
2025-02-27
4核CPU,ARM中量级多面手,米尔瑞芯微RK3562核心板上市
近日,米尔电子携手推出全新一代ARM核心板——基于瑞芯微RK3562(J)处理器的MYC-YR3562核心板及开发板。这款核心板凭借其强大的性能、丰富的接口和灵活的扩展能力,为工业控制、物联网网关、边缘计算等领域提供了高性价比的解决方案。核心板基于 RK3562 或RK3562J处理器,采用四核ARM Cortex-A53架构,主频高达2GHz,集成Mali-G52 GPU,支持4K视频解码和10
2025-02-19
国产FPGA SOC 双目视觉处理系统开发实例
国产FPGA SOC双目视觉处理系统开发实例1. 系统架构解析本系统基于米尔MYC-YM90X构建,搭载安路DR1 FPGA SOC 创新型异构计算平台,充分发挥其双核Cortex-A35处理器与可编程逻辑(PL)单元的协同优势。通过AXI4-Stream总线构建的高速数据通道(峰值带宽可达12.8GB/s),实现ARM与FPGA间的纳秒级(ns)延迟交互,较传统方案提升了3倍的传输效率,极大地提
2025-02-13
国产SoC开发板评测:拿下端侧AI
MYD-LR3576开发板最近,半导体圈的小伙伴应该都有所耳闻,美丽国又开始单方面无理由的制裁国内的高科技企业,从半导体设备、材料到芯片,可谓是全方位的封禁。这种形势下,显然大家应该做好最坏的打算,国产自主可控必须搞起来。那与非网本期内容就跟自主可控强关联——评测一款基于国产SoC的板卡,由米尔电子推出的瑞芯微RK3576开发板(MYD-LR3576)。开发板外设MYD-LR3576开发板分为核心
2025-02-05
2025开工大吉!
新年伊始让我们怀着对未来的憧憬与期许踏上充满挑战的新征程不忘初心 勇敢追梦米尔恭祝大家新的一年开工大吉,诸事顺利