通过物联网管理多台MQTT设备-基于米尔T527开发板

2024-05-10

1316

来源:米尔电子
本篇测评由电子工程世界的优秀测评者“JerryZhen”提供。
本文将介绍基于米尔电子MYD-LT527开发板的网关方案测试。
一、系统概述
基于米尔-全志 T527设计一个简易的物联网网关,该网关能够管理多台MQTT设备,通过MQTT协议对设备进行读写操作,同时提供HTTP接口,允许用户通过HTTP协议与网关进行交互,并对设备进行读写操作。
二、系统架构
网关服务:基于FastAPI框架构建的Web服务,提供HTTP接口。 MQTT客户端:负责与MQTT设备通信,管理设备连接、消息发布和订阅。 设备管理:维护一个设备列表,记录设备的基本信息和状态。 数据存储:使用内存或数据库存储设备数据,确保数据持久化。
三、组件设计
MQTT组件:
负责与MQTT broker建立连接。 订阅设备主题,接收设备发送的消息。 发布消息到设备,实现远程控制。
设备管理组件:
维护一个设备列表,记录设备的唯一标识符(如设备ID)、MQTT主题、连接状态等信息。 提供设备增删改查的方法。
HTTP组件:
基于FastAPI定义HTTP接口。 接收用户请求,调用MQTT组件和设备管理组件进行相应操作。 返回操作结果给用户。
四、接口设计
设备列表:
GET /devices:返回所有设备的列表。 POST /devices:添加新设备到网关。 DELETE /devices/{device_id}:从网关中删除指定设备。
设备详情:
GET /devices/{device_id}:返回指定设备的详细信息。
设备数据:
GET /devices/{device_id}/data:获取指定设备的最新数据。 POST /devices/{device_id}/data:发送数据到指定设备。
设备控制:
POST /devices/{device_id}/control:发送控制命令到指定设备。
五、数据结构设计
设备信息:
设备ID (device_id):唯一标识设备的字符串。 MQTT主题 (mqtt_topic):设备在MQTT broker上的主题。 连接状态 (connection_status):表示设备是否在线的布尔值。 其他设备属性(如名称、描述等)。
设备数据:
设备ID (device_id):关联设备信息的设备ID。 时间戳 (timestamp):数据发送或接收的时间。 数据内容 (data):设备发送或接收的具体数据,可以是JSON格式或其他格式。
六、安全性考虑
使用HTTPS协议提供安全的HTTP通信。 实现用户认证和授权机制,确保只有授权用户可以访问和操作设备。 对于敏感操作(如删除设备),要求用户进行二次确认或提供额外的安全措施。
七、部署与扩展
使用Docker容器化部署网关服务,便于管理和扩展。 根据需要,可以水平扩展网关实例以处理更多的设备连接和请求。
八、实现步骤
安装所需的Python库:fastapi, uvicorn, paho-mqtt等。 创建FastAPI应用并定义路由。 实现MQTT组件,包括与MQTT broker的连接、订阅、发布等功能。 实现设备管理组件,维护设备列表并提供增删改查的方法。 实现HTTP组件,调用MQTT组件和设备管理组件处理用户请求。 编写测试代码,验证网关的各项功能是否正常工作。 部署网关服务并监控其运行状态。
该设计方案仅仅是概述,具体实现细节可能需要根据实际需求和项目环境进行调整和优化。在实际开发中,还需要考虑异常处理、日志记录、性能优化等方面的问题。基于上述设计方案,以下是一个简化版的参考代码,展示了如何使用FastAPI和paho-mqtt库来创建一个物联网网关。需要注意,示例中不包含完整的错误处理、用户认证和授权机制,这些在实际生产环境中都是必不可少的。依赖的主要库版本:
fastapi==0.108.0
paho-mqtt==1.6.1
网关模拟代码gateway.py:
from fastapi import FastAPI, HTTPException, Body, status from paho.mqtt.client import Client as MQTTClient from typing import List, Dict, Any import asyncio import json app = FastAPI() mqtt_client = None device_data = {} subtopic="gateway/device/#" # MQTT回调函数 def on_message(client, userdata, msg): payload = msg.payload.decode() topic = msg.topic device_id = topic.split('/')[-1] device_data[device_id] = payload print(f"Received message from {device_id}: {payload}") # MQTT连接和订阅 def mqtt_connect_and_subscribe(broker_url, broker_port): global mqtt_client mqtt_client = MQTTClient() mqtt_client.on_message = on_message mqtt_client.connect(broker_url, broker_port, 60) mqtt_client.subscribe(subtopic) mqtt_client.loop_start() # MQTT发布消息 async def mqtt_publish(topic: str, message: str): if mqtt_client is not None and mqtt_client.is_connected(): mqtt_client.publish(topic, message) else: print("MQTT client is not connected!") # 设备管理:添加设备 @app.post("/devices/", status_code=status.HTTP_201_CREATED) async def add_device(device_id: str): device_data[device_id] = None return {"message": f"Device {device_id} added"} # 设备管理:获取设备列表 @app.get("/devices/") async def get_devices(): return list(device_data.keys()) # 设备管理:获取设备数据 @app.get("/devices/{device_id}/data") async def get_device_data(device_id: str): if device_id not in device_data: raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=f"Device {device_id} not found") return device_data.get(device_id) # 设备管理:发送数据到设备 @app.post("/devices/{device_id}/data") async def send_data_to_device(device_id: str, data: Dict[str, Any] = Body(...)): topic = f"devices/{device_id}" message = json.dumps(data) await mqtt_publish(topic, message) return {"message": f"Data sent to {device_id}"} # 设备控制:发送控制命令到设备 @app.post("/devices/{device_id}/control") async def control_device(device_id: str, command: str): topic = f"devices/device/{device_id}" await mqtt_publish(topic, command) return {"message": f"Control command sent to {device_id}"} # FastAPI启动事件 @app.on_event("startup") async def startup_event(): mqtt_connect_and_subscribe("127.0.0.1", 1883) # FastAPI关闭事件 @app.on_event("shutdown") async def shutdown_event(): if mqtt_client is not None: mqtt_client.loop_stop() mqtt_client.disconnect() # 运行FastAPI应用 if __name__ == "__main__": import uvicorn uvicorn.run(app, host="127.0.0.1", port=8000)
设备1模拟代码 dev1.py:
import paho.mqtt.client as mqtt # 连接成功回调 def on_connect(client, userdata, flags, rc): print('Connected with result code '+str(rc)) client.subscribe('devices/1') # 消息接收回调 def on_message(client, userdata, msg): print(msg.topic+" "+str(msg.payload)) client.publish('gateway/device/1',payload=f'echo {msg.payload}',qos=0) client = mqtt.Client() # 指定回调函数 client.on_connect = on_connect client.on_message = on_message # 建立连接 client.connect('127.0.0.1', 1883) # 发布消息 client.publish('gateway/device/1',payload='Hello, I am device',qos=0) client.loop_forever()
设备2模拟代码 dev2.py
import paho.mqtt.client as mqtt # 连接成功回调 def on_connect(client, userdata, flags, rc): print('Connected with result code '+str(rc)) client.subscribe('devices/2') # 消息接收回调 def on_message(client, userdata, msg): print(msg.topic+" "+str(msg.payload)) client.publish('gateway/device/2',payload=f'echo {msg.payload}',qos=0) client = mqtt.Client() # 指定回调函数 client.on_connect = on_connect client.on_message = on_message # 建立连接 client.connect('127.0.0.1', 1883) # 发布消息 client.publish('gateway/device/2',payload='Hello, I am device',qos=0) client.loop_forever()





2025-03-20
一篇文章玩转T113的ARM+RSIC V+DSP三核异构!
近年来,随着半导体产业的快速发展和技术的不断迭代,物联网设备种类繁多(如智能家居、工业传感器),对算力、功耗、实时性要求差异大,单一架构无法满足所有需求。因此米尔推出MYD-YT113i开发板(基于全志T113-i)来应对这一市场需求。米尔基于全志T113-i核心板及开发板part 01T113-i芯片及OpenAMP简介T113-i芯片简介T113-i由两颗ARM A7 、一颗C906(RISC
2025-03-13
ST×米尔STM32MP25x高阶实战培训会
STM32MP25x是ST推出的搭载了双核Cortex-A35@1.5 GHz和Cortex-M33@400 MHz的微处理器。米尔电子基于STM32MP25x推出了MYD-LD25X开发板,开发板配备丰富的扩展接口。为助力开发者深度掌握与应用STM32MP25x处理器,米尔将与ST在2025年4月11日和2025年4月18日分别于深圳、上海联合举办线下高阶实战培训会,本次培训在上一期“Bring
2025-03-13
瑞萨交流日进行中,米尔演讲-RZ/T2H高性能模组赋能工业产品创新
3月12日,2025瑞萨工业以太网技术日在深圳拉开序幕。会议全方位解读瑞萨电子最新EtherCAT/PROFINET/EIP解决方案,洞察行业发展趋势,助力企业高效开发更具竞争力的工业以太网产品。米尔电子作为瑞萨的IDH生态合作伙伴发表演讲,并展出RZ/T2H的核心板开发板、技术方案等。米尔活动现场会上,米尔电子产品经理张先生发表了题为"米尔RZ/T2H高性能模组赋能工业产品创新&quo
2025-03-13
米尔闪耀德国纽伦堡Embedded World 2025,展现嵌入式技术无限可能
2025年3月11日,全球领先的嵌入式解决方案提供商米尔电子,在德国纽伦堡盛大亮相全球规模最大的嵌入式系统展览会Embedded World 2025。此次展会,米尔电子携多款重磅新品和前沿技术方案惊艳登场,为嵌入式开发者带来了一场科技盛宴。米尔展台现场展会现场,米尔电子展示全系列产品,基于国内外知名厂商ST、TI、NXP、瑞萨、AMD(Xilinx)、瑞芯微、全志、新唐、芯驰、海思、紫光同创等主
2025-03-07
六城共启 | 米尔邀您预约2025瑞萨工业以太网技术日
随着工业4.0和工业物联网(IIoT)的发展,现代制造工厂设备的数据传输和自动化控制对实时性、带宽和可靠性提出了更高要求。各类工业以太网技术的普及和迭代不断为拓扑节点设备的确定性、安全通信提供了保障。聚焦工业4.0核心需求,瑞萨电子将于2025年3-4月在全国六大城市(深圳、广州、北京、苏州、西安、上海)巡回举办2025瑞萨工业以太网技术日,为工程师与企业决策者提供实时通信技术最佳解决方案,通过案
2025-03-06
XFCE+VNC+SWITCH+TSN全覆盖!STM32MP25x核心板Debian系统发布
一、系统概述MYD-LD25X搭载的Debian系统包含以太网、WIFI/BT、USB、RS485、RS232、CAN、AUDIO、HDMI显示和摄像头等功能,同时也集成了XFCE轻量化桌面、VNC远程操控、SWITCH网络交换和TSN时间敏感网络功能,为工业设备赋予“超强算力+实时响应+极简运维”的体验!类别名称描述源码TF-AArm Trusted Firmware2.8OP-TEEOP-TE
2025-02-27
4核CPU,ARM中量级多面手,米尔瑞芯微RK3562核心板上市
近日,米尔电子携手推出全新一代ARM核心板——基于瑞芯微RK3562(J)处理器的MYC-YR3562核心板及开发板。这款核心板凭借其强大的性能、丰富的接口和灵活的扩展能力,为工业控制、物联网网关、边缘计算等领域提供了高性价比的解决方案。核心板基于 RK3562 或RK3562J处理器,采用四核ARM Cortex-A53架构,主频高达2GHz,集成Mali-G52 GPU,支持4K视频解码和10
2025-02-19
国产FPGA SOC 双目视觉处理系统开发实例
国产FPGA SOC双目视觉处理系统开发实例1. 系统架构解析本系统基于米尔MYC-YM90X构建,搭载安路DR1 FPGA SOC 创新型异构计算平台,充分发挥其双核Cortex-A35处理器与可编程逻辑(PL)单元的协同优势。通过AXI4-Stream总线构建的高速数据通道(峰值带宽可达12.8GB/s),实现ARM与FPGA间的纳秒级(ns)延迟交互,较传统方案提升了3倍的传输效率,极大地提
2025-02-13
国产SoC开发板评测:拿下端侧AI
MYD-LR3576开发板最近,半导体圈的小伙伴应该都有所耳闻,美丽国又开始单方面无理由的制裁国内的高科技企业,从半导体设备、材料到芯片,可谓是全方位的封禁。这种形势下,显然大家应该做好最坏的打算,国产自主可控必须搞起来。那与非网本期内容就跟自主可控强关联——评测一款基于国产SoC的板卡,由米尔电子推出的瑞芯微RK3576开发板(MYD-LR3576)。开发板外设MYD-LR3576开发板分为核心
2025-02-05
2025开工大吉!
新年伊始让我们怀着对未来的憧憬与期许踏上充满挑战的新征程不忘初心 勇敢追梦米尔恭祝大家新的一年开工大吉,诸事顺利